100 великих нобелевских лауреатов - Мусский Сергей Анатольевич. Страница 77
«За исследования полупроводников и открытие транзисторного эффекта» в 1956 году Бардин, Шокли и Браттейн получили Нобелевскую премию. «Транзистор во многом превосходит радиолампы», – отметил Э.Г. Рудберг, член Шведской королевской академии наук, при презентации лауреатов. Указав, что транзисторы значительно меньше электронных ламп и в отличие от последних не нуждаются в электрическом токе для накала нити, Рудберг добавил, что «для акустических приборов, вычислительных машин, телефонных станций и многого другого требуется именно такое устройство».
В 1951 году Бардин покинул телефонную компанию «Белл» и занял одновременно два поста в Иллинойском университете: профессора электротехники и профессора физики. Ученый решил вернуться к проблеме сверхпроводимости и свойств материи при сверхнизких температурах, которой занимался, будучи еще аспирантом.
К 1950 году несколько американских физиков обнаружили, что различные изотопы одного и того же металла становятся сверхпроводящими при различных температурах и что критическая температура обратно пропорциональна атомной массе.
Вот, что рассказывается в книге «Лауреаты Нобелевской премии»:
«Бардин знал, что единственное влияние различных атомных масс на свойства твердого тела проявляется в различиях при распространении колебаний внутри тела. Поэтому он предположил, что в сверхпроводимости металла участвует взаимодействие между подвижными электронами и колебаниями атомов металла и что в результате этого взаимодействия создается связь электронов друг с другом.
К исследованиям Бардина позднее присоединились два его студента по Иллинойскому университету – Л.Н. Купер, который вел исследовательскую работу после защиты докторской диссертации, и Дж.Р. Шриффер, аспирант. В 1956 году Купер показал, что электрон (который несет отрицательный заряд), движущийся сквозь регулярную структуру (решетку) металлического кристалла, притягивает ближайшие положительно заряженные ионы, слегка деформируя решетку и создавая кратковременное увеличение концентрации положительного заряда. Эта концентрация положительного заряда, в свою очередь, притягивает второй электрон, и два электрона образуют пару, связанную друг с другом благодаря искажению кристаллической решетки. Таким путем многие электроны в металле объединяются по два, образуя куперовские пары.
Бардин и Шриффер попытались с помощью концепции Купера объяснить поведение обширной популяции свободных электронов в сверхпроводящем металле, но их постигла неудача. Когда Бардин в 1956 году отправился в Стокгольм получать Нобелевскую премию, Шриффер уже готов был признать поражение, но напутствие Бардина запало ему в душу, и ему удалось-таки развить статистические методы, необходимые для решения данной проблемы.
После этого Бардину, Куперу и Шрифферу удалось показать, что куперовские пары, взаимодействуя между собой, заставляют многие свободные электроны в сверхпроводнике двигаться в унисон, единым потоком. Как и догадывался Ф. Лондон, сверхпроводящие электроны образуют единое квантовое состояние, охватывающее все металлическое тело. Критическая температура, при которой возникает сверхпроводимость, определяет ту степень уменьшения температурных колебаний, когда влияние куперовских пар на координацию движения свободных электронов становится доминирующим. Поскольку возникновение сопротивления при отклонении даже одного электрона от общего потока с необходимостью повлияет на другие электроны, участвующие в сверхпроводимости, и тем самым нарушит единство квантового состояния, такое возмущение весьма мало вероятно. Поэтому сверхпроводящие электроны перемещаются коллективно, без потери энергии.
Достижение Бардина, Купера и Шриффера было названо одним из наиболее важных в теоретической физике с момента создания квантовой теории. В 1958 году они с помощью своей теории предсказали сверхтекучесть (отсутствие вязкости и поверхностного натяжения) у жидкого гелия-3 (изотоп гелия, ядро которого содержит два протона и один нейтрон) вблизи абсолютного нуля, что и подтвердилось экспериментально в 1962 году. Сверхтекучесть наблюдалась ранее у гелия-4 (наиболее распространенный изотоп с одним дополнительным нейтроном), и считалось, что она невозможна у изотопов с нечетным числом ядерных частиц».
В 1959 году Бардин начал работать в Центре фундаментальных исследований Иллинойского университета, продолжая свои изыскания в области физики твердого тела и физики низких температур.
В 1965 году Бардин был удостоен Национальной медали «За научные достижения» Национального научного фонда, а в 1971 году – почетной медали Института инженеров по электротехнике и электронике.
В 1972 году Бардин вместе с Купером и Шриффером вновь получил Нобелевскую премию по физике «за совместное создание теории сверхпроводимости, обычно называемой БКШ-теорией». С. Лундквист, член Шведской королевской академии наук, при презентации лауреатов отметил полноту объяснения ими сверхпроводимости и добавил: «Ваша теория предсказала новые эффекты и весьма стимулировала дальнейшие разработки в теоретических и экспериментальных исследованиях». Он также указал на то, что «дальнейшее развитие… подтвердило огромное значение и ценность идей, заложенных в этой фундаментальной работе в 1957 году».
БКШ-теория привела к созданию материалов, позволяющих сконструировать исключительно мощные и экономичные электромагниты небольших размеров. Такие электромагниты используются при ядерном синтезе, в ускорителях частиц высокой энергии, в поездах на магнитной подушке над рельсами, в биологических и физических исследованиях и при конструировании компактных мощных электрических генераторов.
В 1975 году он стал почетным профессором в отставке. В 1977 году ученый получил президентскую медаль Свободы правительства Соединенных Штатов. В течение многих лет он был соиздателем журнала «Physical Review». Бардин – член американской Национальной академии наук и Американской академии наук и искусств, а также Американского физического общества.
В последние годы жизни ученый много путешествовал и играл в гольф. Умер Бардин 30 января 1991 года.
ПАВЕЛ АЛЕКСЕЕВИЧ ЧЕРЕНКОВ
(1904—1990)
Павел Алексеевич Черенков родился 28 июля 1904 года в селе Новая Чигла Воронежской области в семье крестьянина. По окончании средней школы Павел поступает в Воронежский государственный университет, который окончил в 1928 году. После этого Черенков поступил вначале на подготовительное, а затем в 1932 году на основное отделение Физического (тогда Физико-математического) института Академии наук СССР.
В 1930 году Черенков женился на Марии Путинцевой, дочери профессора русской литературы. У них было двое детей.
Начало научной деятельности Черенкова относится к 1932 году, когда он под руководством С.И. Вавилова приступил к изучению люминесценции растворов ураниловых солей под действием гамма-лучей.
Поначалу в полном соответствии с законом Вавилова—Стокса у Черенкова огромные гамма-кванты источника излучения преобразовались в малые кванты видимого света, то есть люминесцировали.
«Интересно, – рассуждал ученый, – как она изменится, если увеличить концентрацию? А если, наоборот, разбавить раствор водою? Важна, конечно, не общая картина, а точно выраженный физический закон».
До поры до времени никаких сюрпризов: меньше растворено солей – меньше люминесценция.
Далее рассказывает В.Р. Келер:
«Наконец в растворе остаются лишь следы уранила. Теперь уж, разумеется, никакого свечения быть не может.
Но что это?! Черенков не верит своим глазам. Уранила осталась гомеопатическая доза, а свечение продолжается. Правда, очень слабое, но продолжается. В чем дело?
Черенков выливает жидкость, тщательно промывает сосуд и наливает в него дистиллированную воду. А это что такое? Чистая вода светится так же, как и слабый раствор. Но ведь до сих пор все были уверены, что дистиллированная вода неспособна к люминесценции.
Вавилов советует аспиранту попробовать поставить вместо стеклянного сосуд из другого материала. Черенков берет платиновый тигель и наливает в него чистейшую воду. Под дном сосуда помещается ампула со ста четырьмя миллиграммами радия. Гамма-лучи вырываются из крошечного отверстия ампулы и, пробивая платиновое дно и слой жидкости, попадают в объектив прибора, нацеленного сверху на содержимое тигля.