100 великих нобелевских лауреатов - Мусский Сергей Анатольевич. Страница 78
Снова приспособление к темноте, снова наблюдение, и… опять непонятное свечение.
– Это не люминесценция, – твердо говорит Сергей Иванович. – Это что-то другое. Какое-то новое, неизвестное пока науке оптическое явление.
Вскоре всем становится ясно, что в опытах Черенкова имеют место два свечения. Одно из них – люминесценция. Оно, однако, наблюдается лишь в концентрированных растворах. В дистиллированной воде под влиянием гамма-облучения мерцание вызывается иной причиной…
А как поведут себя другие жидкости? Может быть, дело не в воде?
Аспирант наполняет тигель по очереди различными спиртами, толуолом, другими веществами. Всего он испытывает шестнадцать чистейших жидкостей. И слабое свечение наблюдается всегда. Поразительное дело! Оно оказывается очень близким по интенсивности для всех материалов. Четыреххлористый углерод светится всех сильнее, изобутановый спирт – всех слабее, но разница их свечений не превышает 25 процентов.
Черенков пытается погасить свечение особыми веществами, считающимися сильнейшими гасителями обычной люминесценции. Он добавляет к жидкости азотнокислое серебро, йодистый калий, анилин… Эффекта (гасительного) никакого: свечение продолжается. Что делать?
По совету руководителя он нагревает жидкость. На люминесценцию это всегда влияет сильно: она ослабевает и даже прекращается совсем. Но в данном случае яркость свечения не меняется ничуть. Выходит, здесь действительно какое-то особое, доныне неизвестное явление? Какое же?»
В 1934 году в «Докладах Академии наук СССР» появляются первые два сообщения о новом виде излучения: Черенкова, излагающего подробно результаты экспериментов, и Вавилова, пытающегося их объяснить.
Таинственное свечение можно было видеть только в пределах узкого конуса, ось которого совпадала с направлением гамма-излучения. Учтя это обстоятельство, молодой ученый поместил свой прибор в сильное магнитное поле. И тут же убедился, что поле отклоняет узкий конус свечения в сторону. Но это возможно лишь для электрически заряженных частиц, например электронов. Чтобы окончательно убедиться в этом, Черенков использовал другой вид излучения – бета-лучи, представляющих собою поток быстрых электронов. Он облучил ими те же жидкости, что и раньше, и получил такой же световой эффект, как при гамма-облучении.
Так было выяснено, что загадочное оптическое явление возникает только там, где налицо движение быстрых электронов.
Объяснение механизма преобразования движения электронов в движение фотонов необычного свечения дали в 1937 году советские физики Франк и Тамм. Электроны летят быстрее, чем распространяется свет в данной среде, и в результате возникает необычное явление: порожденные электронами электромагнитные волны отстают от своих родителей и вызывают свечение.
Вскоре появилась крылатая фраза: «Греки слышали голоса звезд, а в черенковском свечении слышны голоса электронов. Это поющие электроны».
В 1935 году Черенков окончил аспирантуру и защитил кандидатскую диссертацию, после чего получил должность старшего научного сотрудника Физического института им. Лебедева АН СССР (ФИАН).
Он продолжал исследовать открытое им свечение. В 1936 году он установил характерное свойство нового вида излучения – своеобразную пространственную асимметрию («черенковский конус»).
После появления количественной теории явления, разработанной Таммом и Франком, Черенков в серии тонких экспериментов подтверждает ее во всех деталях. Фундаментальные работы Черенкова по исследованию открытого им излучения заряженных частиц, движущихся со сверхсветовой скоростью, явились значительным вкладом в мировую науку и признаны классическими.
«Помимо принципиального научного значения, излучения Черенкова имеют и большую практическую ценность, – пишет И.М. Дунская. – Исключительно важна его роль в физике высоких энергий. При движении быстрой частицы в среде возникает направленная световая вспышка, которую регистрируют с помощью фотоумножителя. Такие счетчики используются как для обнаружения быстрых заряженных частиц, так и для определения их свойств: направления движения, величины заряда, скорости и т д. Счетчики Черенкова, благодаря характерным особенностям излучения, существенно расширяют возможности эксперимента и позволяют выполнить эксперименты, невозможные при использовании обычных люминесцентных счетчиков. В частности, черенковское излучение было использовано в опытах по обнаружению антипротона. Оно позволяет также наблюдать наиболее быстрые частицы космических лучей».
За работы по открытию и изучению этого явления Черенкову совместно с Вавиловым, Таммом и Франком сначала в 1946 году присудили Государственную премию, а в 1958 году (уже после смерти Вавилова) Черенков, Тамм и Франк были удостоены звания Лауреатов Нобелевской премии по физике.
В послевоенные годы Черенков некоторое время занимался исследованиями космических лучей, а также принимал руководящее участие в разработке и сооружении ускорителей легких частиц. Так, в январе 1948 года под его руководством осуществлен запуск первого в СССР бетатрона. Одновременно Черенков принимает участие в работах по проектированию и сооружению синхротрона ФИАН на 250 МэВ, за что в 1951 году получил Государственную премию. Вскоре после запуска синхротрона ученый принял руководство над всеми работами по его усовершенствованию, что позволило развернуть работы по изучению электромагнитных взаимодействий в области фотонов больших энергий. В возглавляемой Черенковым лаборатории фотомезонных процессов удалось получить целый ряд интереснейших результатов по изучению процессов фоторасщепления гелия, фотообразования пи-мезонов, фоторасщепления некоторых легких ядер методом наведенной активности.
В середине пятидесятых годов Черенков, совместно с И.В. Чувило, экспериментально исследовал фотоделение ядер тяжелых элементов. Затем под руководством Павла Алексеевича был успешно разработан новый метод накопления и получения встречных электрон-позитронных пучков. В 1963—1965 годах проводились детальные исследования этого метода, а в начале 1966 года принципиальная возможность его была проверена экспериментально на 280 МэВ синхротроне ФИАН. Таким образом, впервые в практике физического эксперимента были получены встречные пучки электронов и позитронов.
«Работы по накоплению и получению встречных пучков в ускорителях имеют первостепенное значение для физики высоких энергий, – отмечает И.М. Дунская. – Использование этого метода позволяет перевести действующие ускорители в режим накопления и тем самым на основе уже имеющейся экспериментальной базы перейти к исследованиям взаимодействий в области высоких и сверхвысоких энергий. Этот метод был впоследствии использован для получения встречных пучков на крупнейшем электронном ускорителе в Кембридже (США)».
В 1964 году Павла Алексеевича избрали членом-корреспондентом Академии наук СССР, а в 1970 году – действительным членом Академии наук СССР.
В 1977 году за цикл работ по исследованию расщепления легких ядер гамма-квантами высоких энергий методом камер Вильсона, действующих в мощных пучках электронных ускорителей, Черенков удостоен Государственной премии СССР.
Кроме научной деятельности Черенков вел большую педагогическую работу, сначала с 1948 года в должности профессора Московского энергетического института, а с 1951 года и Московского инженерно-физического института. Он дал путевку в жизнь большому числу исследователей.
ИГОРЬ ЕВГЕНЬЕВИЧ ТАММ
(1895—1971)
Игорь Евгеньевич родился 8 июля 1895 года во Владивостоке в семье Евгения Тамма, инженера-строителя, и Ольги (урожденной Давыдовой) Тамм. Евгений Федорович работал на строительстве Транссибирской железной дороги.
С 1898 года и до окончания гимназии в 1913 году Игорь жил с родителями в Елизаветграде (сейчас Кировоград, Украина).
Затем он уехал учиться в Эдинбургский университет, где провел год. Здесь Игорь зачитывался «нелегальщиной», штудировал Маркса и участвовал в политических митингах… В начале лета 1914 года Игорь вернулся домой и поступил на физико-математический факультет Московского университета.