Для юных математиков. Веселые задачи - Перельман Яков Исидорович. Страница 30

Какая из линий ab , cd или ef  на черт. 70-м самая длинная?

Для юных математиков. Веселые задачи - _182.jpg
Рис. 70. Сравните ab , cd и ef .

ЗАДАЧА № 99 Поместится ли?

Поместится ли в промежутке между АВ и CD (черт. 71) изображенный здесь кружок?

Для юных математиков. Веселые задачи - _183.jpg
Рис. 71. Поместится ли кружок между АВ и CD?

ЗАДАЧА № 100 Два кружка

На черт. 72-м вы видите два заштрихованных кружка, которые кажутся одинаковых размеров. Но после того, как вы изощрили свой глазомер предыдущими упражнениями, вы, конечно, не попадете впросак. Вам нетрудно поэтому будет ответить на вопрос: какой кружок больше?

Для юных математиков. Веселые задачи - _184.jpg

Рис. 72. Какой кружок больше?

ОТВЕТЫ НА ЗАДАЧИ №№ 91-100

№ 91. Обе дуги одинаковы.

№ 92. Все полоски одинаковой длины.

№ 93. Палубы у обоих кораблей изображены одинаковой длины.

№ 94. Середина указана правильно.

№ 95. Потому что они действительно равны.

№ 96. Ошибки нет: фигура вокруг шляпы – квадрат.

№ 97. Прямая упрется в точку с.

№ 98. Все три линии одинаковой длины.

№ 99. Кружок не помещается.№ 100 (задача-ловушка). Кружки равны.

Приложение «ТАНГРАММЫ»

Для юных математиков. Веселые задачи - _185.jpg

Для юных математиков. Веселые задачи - _186.jpg

Примечания

1

Для знакомых со школьной арифметикой предназначается другая книга того же автора: «Загадки и диковинки в мире чисел». Петроград. 1923 г.

2

Тиражи: 1-го издания 1916 г. – 4000 экз., 2-го – 40000 экз. В этих изданиях книжечка была выпущена под заглавием «Веселые задачи».

3

На некоторых дорогах рельсы 6-метровые. Выйдя из вагона на станции, вы можете, измеряя рельсы шагами, узнать их длину; каждые 8 шагов можно принять за 5 метров.

4

Кузьмы Пруткова.

5

Точнее, не перегнать, а отстать от Земли, т. е. двигаться по ее поверхности в сторону, обратную ее движению, так быстро, чтобы продлить для себя продолжительность суток.

6

Человек может обогнать землю и пешком – в 50-ти километрах от полюса.

7

Отсюда ясно, между прочим, что часто встречающееся в учебниках определение поверхности, как «границы тела» – несостоятельно; поверхность Мебиуса никакого тела ограничивать не может, а между тем она – поверхность.

8

Вы можете отрезать страницы Приложения по пунктирной линии, наклеить их на плотные листы бумаги, вырезать фигурки и составить из них различные силуэты.

9

Первое издание разошлось в 4000 экз., второе (1919 г.) – в 15000 экз., третье (1920 г.) – в 25000 экз.

10

Для знакомых с школьным курсом арифметики мною составлен другой сборник математических упражнений: «Загадки и диковинки в мире чисел» (Лгр., 1923, изд. 2-е).

11

Водоизмещение корабля равно наибольшему грузу, какое он может поднять (включая и вес самого судна). Тонна – около 62,5 пудов.

12

Я не сообщил этой цифры в условии задачи потому, что самая величина потери – 8-я, или 10-я, или 20-я часть – для решения задачи не имеет значения.

13

Их удобнее всего наклеивать на четыре стороны квадратного бруска.

14

Столько горошин помещается в куб. сантиметре при рыхлом сложении; при более же плотной укладке, когда одна горошина частью помещается в промежутке между соседними, горошин должно поместиться больше.

15

Впрочем, полвека тому назад такая работа была выполнена одним учителем чистописания в Англии: он аккуратно расставил в толстой тетради миллион точек, по тысяче на каждой странице.

16

Эта задача заимствована из обширного старинного русского учебника математики Ефима Войтяховского, конца XVIII века.