Загадки и диковинки в мире чисел - Перельман Яков Исидорович. Страница 3
Узнав путем таких – довольно, правда, долгих – поисков, что вилка обозначает цифру 1, мы дальше уже идем более уверенно и быстро. Из действия вычитания в III и IV рядах видим, что чашка обозначает либо 6, либо 8. Но 8 приходится отвергнуть, потому что тогда вышло бы, что «бокальчик» = 4, а мы знаем, что цифра 4 обозначена ножом. Итак, чашка обозначает цифру 6, а следовательно, бокальчик – цифру 3.
Какая же цифра обозначена кувшинчиком в I ряду? Это легко узнать, раз нам известно произведение (III ряд, 624) и один из множителей (II ряд, 12). Разделив 624 на 12, получим 52. Следовательно, «кувшинчик» = 5.
Значение тарелки определяется просто: в VII ряду «тарелка» = «вилке» + «чашка» = «бокальчику» + + «нож»; т. е. «тарелка» =1 + 6 = 3 + 4 = 7.
Остается разгадать цифровое значение чайника и сахарницы в VII ряду. Так как для цифр 1, 2, 3, 4, 5, 6 и 7 предметы уже найдены, то остается выбирать только между 8, 9 и 0. Подставим в действие деления, изображенное в последних трех рядах [5] , соответствующие цифры вместо предметов. Получим такое расположение (буквами ни с обозначены «чайник» и «сахарница»):
Число 712, мы видим, есть произведение двух неизвестных чисел не и ч, которые, конечно, не могут быть ни нулем, ни оканчиваться нулем: значит, ни ч, ни с не есть нуль. Остаются два предположения: ч = 8 и с = 9, или же наоборот ч = 9 и с = 8. Но перемножив 98 на 8, мы не получаем 712; следовательно, чайник обозначает 8, а сахарница 9 (действительно: 89 ? 8 = 712). Итак, мы разгадали иероглифическую надпись из предметов столовой сервировки:
кувшин = 5
ложка = 2
вилка =1
чашка = 6
бокальчик = 3
чайник = 8
сахарница = 9тарелка = 7
А весь ряд арифметических действий, изображенный этой оригинальной сервировкой, приобретает такой смысл:
Арифметические ребусы
Арифметические ребусы – занимательная игра американских школьников, у нас пока еще совершенно неизвестная [6] . Она состоит в отгадывании задуманного слова посредством решения задачи вроде той, какую мы сейчас решили в статье «Арифметика за завтраком». Загадывающий задумывает слово, состоящее из 10 неповторяющихся букв – например, «трудолюбие», «специально», «просвещать». Приняв буквы задуманного слова за цифры, загадывающий изображает посредством этих букв какой-нибудь случай деления. Если задумано слово «просвещать», то можно взять такой пример деления:
Можно взять и другие слова для делимого и делителя – например:
Буквенное изображение того или иного случая деления вручается отгадчику, который и должен по этому бессмысленному, казалось бы, набору букв угадать задуманное слово. Как в подобных случаях следует доискиваться числового значения букв, – читатель уже знает: мы объяснили это, когда решали задачу, предложенную в предыдущей статье. При некотором терпении всегда можно успешно разгадывать эти арифметические ребусы, если только пример достаточно длинен и дает необходимый материал для догадок и испытаний. Если же выбраны слова, дающие чересчур короткий случай деления, например:
– то разгадывание очень трудно. В подобных случаях надо просить загадывающего продолжить деление до сотых или тысячных долей, т. е. получить в частном еще 2 или 3 десятичных знака. Вот пример деления до сотых долей:
Если бы в этом случае мы остановились на целом частном (со), отгадка задуманного слова едва ли была бы возможна.
Для читателя, который пожелал бы испытать свои силы в разрешении подобных арифметических ребусов, привожу еще несколько примеров:
По этим образцам читатель сможет самостоятельно подыскать множество других примеров.
Десятичная система в книжных шкафах
Особенность десятичной системы счисления остроумно используется даже в области, где с первого взгляда этого и ожидать не приходится, – именно, при распределении книг в библиотеке.
Обычно, желая указать библиотекарю номер нужной вам книги, вы просите дать вам каталог и предварительно справляетесь в нем, – потому что в каждом книгохранилище существует обыкновенно своя нумерация книг. Однако имеется и такая система распределения книг по номерам, при которой одна и та же книга должна иметь одинаковый номер во всякой библиотеке. Это так называемая десятичная система классификации книг.
Система эта – к сожалению, принятая пока еще далеко не всюду, – чрезвычайно удобна и весьма не сложна. Сущность ее состоит в том, что каждая отрасль знания обозначается определенным числом и притом так, что цифровой состав этого числа сам говорит о месте данного предмета в общей системе знаний.
Книги прежде всего разбиваются на десять обширных классов, обозначенных цифрами от 0 до 9.
0. Сочинения общего характера.
1. Философия.
2. Религия.
3. Общественные науки.
4. Филология.
5. Физико-математические и естественные науки.
6. Прикладные науки.
7. Изящные искусства.
8. Литература.9. История и география.
В обозначении номера книги по этой системе первая цифра прямо указывает на ее принадлежность к определенному классу из перечисленных выше: каждая книга по философии имеет номер, начинающийся с 1, по математике – с 5, по технике – с 6. И наоборот, если номер книги начинается, например, с 4, то мы, не раскрывая книги, можем утверждать, что перед нами сочинение из области языкознания. Далее, каждый из десяти перечисленных классов книг подразделяется на 10 главных отделов, тоже отмеченных цифрами; эти цифры ставят в обозначении номера на втором месте. Так, 5-й класс, включающий физико-математические и естественные книги, разделяется на следующие отделы:
50. Общие сочинения по физико-математическим и естественным наукам.
51. Математика.
52. Астрономия. Геодезия.
53. Физика. Механика.
54. Химия.
55. Геология. Палеонтология.
56. Общая география.
57. Биология. Антропология.
58. Ботаника.59. Зоология.
Сходным образом разбиваются по отделам и остальные классы. Например, в классе прикладных наук (6) отдел медицины обозначается цифрой 1 после 6, т. е. числом 61; по сельскому хозяйству – 63, по домоводству – 64, торговле и путям сообщения – 65, промышленности и технологии – 66, и т. п. Точно так же в 9-м классе все книги по географии относятся к отделу № 91, и т. п.
Присоединение к двум первым цифрам третьей характеризует ее содержание еще ближе, указывая, к какому именно подотделу данного отдела она относится. Например, в отделе математики (51) присоединение, на третьем месте, цифры 1 указывает, что книга относится к арифметике; цифры 2 – к алгебре, и т. д. Поэтому все книги по арифметике имеют первые три цифры № 511, по алгебре – 512, геометрии – 513 и т. д. Точно так же и отдел физики (53) разбивается на 10 подотделов: книги по электричеству обозначаются № 537, по оптике – № 535 и т. д.
Затем следует дальнейшее дробление подотдела на разряды, обозначаемые четвертой цифрой номера, и т. д.
В библиотеке, устроенной по десятичной системе, нахождение нужной книги упрощается до крайности. Если, например, вы интересуетесь геометрией, вы прямо идете к шкафам, где номера начинаются с пяти, отыскиваете тот шкаф, где хранятся книги № 51… и пересматриваете в нем только те полки, где стоят книги № 513…; здесь собраны все книги по геометрии, имеющиеся в данной библиотеке. Точно так же, ища книги по кооперации, вы обратитесь к книгам № 331… не заглядывая в каталог и никого не затрудняя расспросами.Как бы обширна ни была библиотека, никогда не может случиться недостатка в числах для нумерации книг. И наоборот, отсутствие книг по каким-либо отраслям не может препятствовать применению десятичной системы: некоторый ряд номеров останется лишь неиспользованным.