Удивительная космология - Шильник Лев. Страница 41

Что и говорить, душераздирающее зрелище. Однако это еще цветочки, потому что существуют куда более катастрофические сценарии нашего далекого будущего. Один из них показывает, что в мире вообще ничего не останется. Дело в том, что если обычное расширение Вселенной в виде непрерывного прироста ее пространства не порождает никаких сил, действующих на физические тела, то темная энергия ведет себя совершенно иначе. Ускоренное раздувание аналогично появлению некоей силы, растягивающей все объекты. Сегодня ее величина исчезающе мала – в 1030 раз слабее тяготения на поверхности Земли. Если ускорение будет неуклонно нарастать по экспоненте, то, в конце концов, дело закончится не только разрушением всех физических тел, но даже элементарных частиц, из которых построена вся материя. Вселенная превратится в распухающее ничто, опустеет в самом буквальном смысле слова. Эта модель, получившая название Большого разрыва (Big Rip по-английски), была предложена в 2003 году в статье Р. Р. Колдвелла, М. Камионковского и H. Н. Вайнберга «Фантомная энергия и космический конец света». Однако не все так безнадежно: другие астрофизики, например уже знакомый нам Стивен Хокинг, полагают, что расширение рано или поздно сменится сжатием. Откровенно говоря, подобная перспектива тоже не сулит человечеству ничего хорошего, но это уже отдельная песня.

Впрочем, «грядущие годы таятся во мгле», как однажды написал классик, а потому не станем гадать на кофейной гуще, но оборотимся лицом к прошлому В предыдущей главе поминалась теория суперструн, которая вроде бы непротиворечиво увязывает в одно целое квантовую механику и общую теорию относительности. Настало время поговорить о ней подробнее, тем более что струнные теории в разных изводах сегодня весьма популярны и очень живо обсуждаются.

Для начала вспомним о четырех типах фундаментальных взаимодействий – электромагнитном, сильном, слабом и гравитационном, под знаком которых развивается этот несовершенный мир. Вкратце напомню вам, читатель, что электромагнетизм был исчерпывающе описан английским физиком Джеймсом Максвеллом в 1873 году. Если бы не эта сила, построенная на противоборстве двух полярных начал (заряды одного знака отталкиваются, а разноименные – притягиваются), ни атомы, ни молекулы не смогли бы существовать. Химия и биология так или иначе сводятся к электромагнитному взаимодействию. Телевидение и радио, благодаря которым мы узнаем о цунами в Индонезии, эскападах недобитых талибов в предгорьях Гиндукуша или очередном взлете цен на нефть на мировых рынках, тоже обязаны своим существованием феномену электромагнетизма.

Сильное взаимодействие удерживает протоны и нейтроны внутри атомного ядра, противодействуя силам кулоновского отталкивания, а также склеивает воедино субъядерные частицы – кварки, из которых построена вся материя. Слабое взаимодействие (слабее его только гравитационное) отвечает за превращения элементарных частиц в микромире и некоторые виды радиоактивного распада.

Наконец, гравитационное взаимодействие (оно самое слабое из всех – электромагнитное отталкивание противоположных зарядов превышает стягивающую силу гравитации в 1043 раз) вынуждает тела притягиваться друг к другу и имеет только один знак – массу (что такое «масса» и откуда она берется, не знает никто). Но электромагнитные силы действуют только на заряженные объекты, а гравитация – на все тела без исключения, обладающие массой. А поскольку макроскопические структуры почти всегда электрически нейтральны, сила всемирного тяготения приобретает определяющую роль в космологических масштабах.

Переносчиками электромагнитного взаимодействия являются фотоны (если точнее – виртуальные фотоны), сильного – глюоны (от английского glue — «клей», «клеить»), слабого – так называемые тяжелые векторные бозоны (W+-бозон, W--бозон и Z0-бозон). А вот гравитация стоит в этом ряду особняком, потому что переносчик гравитационного взаимодействия – гипотетический гравитон – до сих пор не обнаружен. Поэтому гравитационное поле описывается в рамках общей теории относительности как искривленный четырехмерный пространственно-временной континуум. Кривизна пространства определяется наличием масс, а сами эти массы, как уже говорилось прежде, перемещаются не по прямой, а по траекториям наименьшей длины – геодезическим линиям. Вспомним простой пример. Если положить на эластичный резиновый лист увесистый металлический шарик, резина просядет, образовав ямку. Если теперь взять шарик поменьше и попробовать его прокатить мимо тяжелого шара, он или скатится в углубление (притянется к тяжелому шару), или опишет около него некоторую кривую, что будет зависеть от скорости легкого шарика и расстояния между ними. Чем больше масса, тем сильнее искривляется пространство. Другими словами, сила гравитации эквивалентна изгибу пространства-времени.

Удивительная космология - i_034.jpg

Искривление пространства (схематичное изображение)

Остается добавить, что электромагнетизм и гравитация являются дальнодействующими силами, а сильное и слабое взаимодействия эффективны только на малых и сверхмалых расстояниях (10-13—10-15 сантиметров и 10-16—10-17 сантиметров соответственно).

В 1967 году в физике элементарных частиц произошло знаменательное событие. Американец Стивен Вайнберг и англичанин Абдус Салам независимо друг от друга показали, что электромагнитное и слабое взаимодействия имеют единую природу и общее происхождение. Порознь они выступают только при сравнительно низких температурах, а при температуре порядка 1015 градусов становятся неразличимыми, объединяясь в электрослабую силу. Из модели Вайнберга – Салама следовало, что в дополнение к фотону существуют еще три частицы, которые являются переносчиками слабого взаимодействия, – уже знакомые нам векторные бозоны («дубльве плюс», «дубльве минус» и «зет ноль»). При высоких уровнях энергии, соответствующих температуре 1015 градусов Кельвина (а температура, как известно, есть лишь мера количества энергии), W-и Z-частицы начинают вести себя точно так же, как без-массовый фотон. Это напоминает поведение шарика при игре в рулетку.

Удивительная космология - i_035.jpg

Стивен Вайнберг

Удивительная космология - i_036.jpg

Абдус Салам

Стивен Хокинг пишет:

При высоких энергиях (то есть при быстром вращении колеса) шарик ведет себя почти одинаково – безостановочно вращается. Но когда колесо замедлится, энергия шарика уменьшается и в конце концов он проваливается в одну из тридцати семи канавок, имеющихся на колесе. Иными словами, при низких энергиях шарик может существовать в тридцати семи состояниях. Если бы мы почему-либо могли наблюдать шарик только при низких энергиях, то считали бы, что существует тридцать семь разных типов шариков!

10 лет спустя теоретическая модель Вайнберга – Салама блестяще подтвердилась экспериментально: были найдены три типа тяжелых векторных бозонов, причем именно с теми параметрами, которые предсказывались. Успех превзошел все ожидания, и сегодня по праву считается, что значимость модели Вайнберга – Салама, получившей название стандартной модели, вполне сравнима с достижениями великого Максвелла, объединившего в свое время электричество и магнетизм.

Но если электромагнетизм и слабые силы суть две стороны одной медали, тогда, быть может, и сильное взаимодействие есть не что иное, как разновидность не коей общей силы? И в самом деле, стандартная модель предсказывает, что при еще более высоких температурах (около 1028 градусов) должно произойти объединение сильного и электрослабого взаимодействий. Фотоны, глюоны и векторные бозоны начинают вести себя идентично и становятся все «на одно лицо», как три ипостаси Творца – Бог Отец, Бог Сын и Бог Дух Святой. Переносчиком этого универсального взаимодействия должна быть таинственная частица Хиггса (или Х-бозон), которая пока еще экспериментально не обнаружена. Однако физики не теряют надежды, что Большой адронный коллайдер – крупнейший в мире ускоритель элементарных частиц, построенный на берегу Женевского озера и запущенный осенью 2007 года, поможет расставить все точки над «i». Между прочим, хиггсовский бозон примечателен еще и тем, что наделяет массой все остальные частицы.