The Innovators: How a Group of Inventors, Hackers, Geniuses, and Geeks Created the Digital Revolutio - Isaacson Walter. Страница 43

When Terman learned that Shockley was thinking of locating his new enterprise in Palo Alto, he wrote a courtship letter that described all the incentives that proximity to Stanford would offer. “I believe that its location here would be mutually advantageous,” he concluded. Shockley agreed. While its new Palo Alto headquarters was being constructed, Shockley Semiconductor Laboratory, a division of Beckman Instruments, set up temporarily in a Quonset shed that had served as a storage space for apricots. Silicon had come to the valley.

ROBERT NOYCE AND GORDON MOORE

Shockley tried to recruit some of the researchers he had worked with at Bell Labs, but they knew him too well. So he set about compiling a list of the best semiconductor engineers in the country and calling them cold. The most notable of them all, destined to be a momentous choice, was Robert Noyce, a charismatic Iowa golden boy with a doctorate from MIT, who was at the time a twenty-eight-year-old research manager at Philco in Philadelphia. In January 1956 Noyce picked up the phone and heard the words “Shockley here.” He knew immediately who it was. “It was like picking up the phone and talking to God,” Noyce declared.50 He later joked, “When he came out here to organize Shockley Labs, he whistled and I came.”51

Noyce, the third of four sons of a Congregationalist minister, grew up in a series of tiny Iowa farm towns—Burlington, Atlantic, Decorah, Webster City—where his father found himself called. Both of Noyce’s grandfathers were also ministers of the Congregationalist Church, a Nonconformist Protestant movement that was a product of the Puritan Reformation. Even though he didn’t inherit their religious faith, Noyce did absorb their denomination’s aversion to hierarchy, centralized authority, and autocratic leadership.52

When Noyce was twelve, his family finally settled down in Grinnell (population 5,200 at the time), about fifty miles east of Des Moines, where his father got an administrative job with the Church. The centerpiece of the town was Grinnell College, founded in 1846 by a group of Congregationalists from New England. Noyce, with an infectious grin and a taut graceful body, flourished in the town’s high school as a scholar, athlete, and heartthrob. “The quick lopsided smile, the good manners and fine family, the wavy hair high on his forehead, the dash of rapscallion—it made for an appealing combination,” wrote his biographer Leslie Berlin. Said his high school girlfriend, “He was probably the most physically graceful man I’ve ever met.”53

The Innovators: How a Group of Inventors, Hackers, Geniuses, and Geeks Created the Digital Revolution - _92.jpg

Robert Noyce (1927–90) at Fairchild in 1960.

The Innovators: How a Group of Inventors, Hackers, Geniuses, and Geeks Created the Digital Revolution - _93.jpg

Gordon Moore (1929– ) at Intel in 1970.

The Innovators: How a Group of Inventors, Hackers, Geniuses, and Geeks Created the Digital Revolution - _94.jpg

Gordon Moore (far left), Robert Noyce (front center), and the other “traitorous eight” who in 1957 left Shockley to form Fairchild Semiconductor.

Years later the literary journalist Tom Wolfe wrote a glimmering profile of Noyce for Esquire, in which he came close to canonizing him:

Bob had a certain way of listening and staring. He would lower his head slightly and look up with a gaze that seemed to be about one hundred amperes. While he looked at you he never blinked and never swallowed. He absorbed everything you said and then answered very levelly in a soft baritone voice and often with a smile that showed off his terrific set of teeth. The stare, the voice, the smile; it was all a bit like the movie persona of the most famous of all Grinnell College’s alumni, Gary Cooper. With his strong face, his athlete’s build, and the Gary Cooper manner, Bob Noyce projected what psychologists call the halo effect. People with the halo effect seem to know exactly what they’re doing and, moreover, make you want to admire them for it. They make you see the halos over their heads.54

As a kid, Noyce benefited from a situation that was common back then: “Dad always managed to have some sort of workshop in the basement.” Young Noyce loved to make things, including a vacuum-tube radio, a sled with a propeller, and a headlight to use on his early-morning paper route. Most famously, he built a hang glider that he flew by hitching it to the back of a fast-moving car or by leaping with it off a barn roof. “I grew up in small town America, so we had to be self-sufficient. If something was broke you fix it yourself.”55

Like his brothers, Noyce was at the top of his class academically. He mowed the lawn of Grant Gale, a beloved professor who taught physics at Grinnell College. With the help of his mother, who knew the Gales from church, he wrangled permission to take Gale’s college course during his senior year of high school. Gale became Noyce’s intellectual mentor, which continued the following year, when he enrolled at Grinnell as an undergraduate.

There he pursued a double major in math and physics, starring in all endeavors, academic and extracurricular, with a grace worn lightly. He made a point of deriving every formula in physics class from scratch, became the Midwest conference champion diver on the swim team, played oboe in the band, sang in the chorus, designed circuits for the model airplane club, had the lead in a radio soap opera, and helped his math professor teach a calculus class on complex numbers. Most amazingly, he was, despite all this, well liked.

His scampish affability sometimes got him into trouble. When his dormitory decided to throw a spring luau in his junior year, Noyce and a friend volunteered to procure the pig that would be roasted. After a few drinks, they snuck into a farm nearby and, combining strength with agility, kidnapped a twenty-five-pound suckling. After they butchered the squealing pig with knives in an upstairs shower in the dorm, they roasted it. There followed much cheering, applause, eating, and drinking. The next morning brought a moral hangover. Noyce went with his friend to the farmer and confessed, offering to pay for what they had taken. In a storybook he would have been given the George Washington cherry tree award. But in the struggling farm country of Iowa, the larceny he had committed was neither funny nor forgivable. The farm was owned by the dour mayor of the town, and he threatened to press charges. Eventually Professor Gale helped broker a compromise: Noyce would pay for the pig and be suspended for one semester, but not expelled. Noyce took it in stride.56

When Noyce returned in February 1949, Gale did him what may have been an even bigger favor. The professor had been a college friend of John Bardeen, and when he read about the transistor that Bardeen had coinvented at Bell Labs he wrote and asked for a sample. He also contacted the president of Bell Labs, who was a Grinnell alum and the father of two current students. A batch of technical monographs arrived followed by a transistor. “Grant Gale got hold of one of the first point contact transistors that was ever made,” Noyce recalled. “That was during my junior year there. I suppose that was one of the things that influenced me to get involved in transistors.” In a later interview, Noyce described his excitement more vividly: “The concept hit me like the atom bomb. It was simply astonishing. Just the whole concept, that you could get amplification without a vacuum. It was one of those ideas that just jolts you out of the rut, gets you thinking in a different way.” 57

Upon graduation, Noyce received what was, for someone with his style and charm, the college’s highest honor, awarded by a vote of his classmates: the Brown Derby Prize, given to “the senior man who earned the best grades with the least amount of work.” But when he arrived at MIT to pursue a doctorate, he realized that he was going to have to apply himself more diligently. He was deemed deficient in theoretical physics and had to take an introductory course in the topic. By his second year he had regained his stride and won an academic fellowship. His dissertation investigated how the photoelectric effect was manifest in the surface state of insulators. Although it was not a triumph of lab work or analysis, it did familiarize him with Shockley’s research in that field.