The Innovators: How a Group of Inventors, Hackers, Geniuses, and Geeks Created the Digital Revolutio - Isaacson Walter. Страница 44

Thus when he got the summons from Shockley, he was eager to accept. But there was one strange hoop he had to leap through. Shockley, who had failed to triumph on an IQ test as a kid and was starting to show the creepy paranoia that would mar his later career, insisted that his new hires go through a battery of psychological and intelligence exams. So Noyce spent an entire day at a testing firm in Manhattan reacting to ink blots, opining on weird drawings, and filling out aptitude quizzes. He was judged to be an introvert and not a good potential manager, which revealed a lot more about the weaknesses of the tests than of Noyce.58

Shockley’s other great hire, also judged by the psychology firm to be a poor potential manager, was the soft-spoken chemist Gordon Moore, who also got a phone call from Shockley out of the blue. Shockley was carefully assembling a team with different scientific talents that could be mixed together to catalyze innovation. “He knew chemists had been useful to him at Bell Laboratories, so he thought he needed one in his new operation, and he got my name and gave me a call,” Moore said. “Fortunately, I recognized who it was. I picked up the phone, he says, ‘Hello, this is Shockley.’?”59

With his self-effacing and genial manner cloaking a precision-guided mind, Gordon Moore would become one of the most revered and beloved figures in Silicon Valley. He had grown up near Palo Alto, in Redwood City, where his father was a deputy sheriff. When he was eleven, the kid next door got a chemistry set. “In those days there was really neat stuff in chemistry sets,” Moore recalled, lamenting that government regulations and parental fears have since neutered such kits and probably deprived the nation of some needed scientists. He was able to turn out a small quantity of nitroglycerin, which he made into dynamite. “A couple of ounces of dynamite makes an absolutely fantastic firecracker,” he gleefully recounted in an interview, wiggling all ten of his fingers to show that they had survived such childhood foolery.60 His fun with chemistry sets, he said, helped set him on a path to a chemistry degree from Berkeley and a doctorate from Caltech.

From his birth until he finished his doctorate, Moore never ventured farther east than Pasadena. He was a true-bred Californian, easygoing and affable. For a brief period after getting his PhD, he went to work at a Navy physics laboratory in Maryland. But he and his beloved wife, Betty, also a native of northern California, were restless to get home, so he was receptive when the call from Shockley came.

When Moore went for his interview, he was twenty-seven, a year younger than Noyce, and was already balding in a distinguished manner. Shockley peppered him with questions and brainteasers, holding a stopwatch to time his answers. Moore did so well that Shockley took him to dinner at Rickeys Hyatt House, the local hangout, and did his magic trick of bending a spoon without seeming to apply any physical force.61

The dozen engineers recruited by Shockley, almost all under thirty, considered him a bit bizarre but absolutely brilliant. “He just showed up in my lab at MIT one day, and I thought, my God, I’ve never met anybody this brilliant,” remarked the physicist Jay Last. “I changed my whole career plans and said, I wanna go to California and work with this man.” Among the others were Jean Hoerni, a Swiss-born physicist, and Eugene Kleiner, who later became a great venture capitalist. By April 1956 there were enough new employees to throw a welcome party. Noyce drove across the country from Philadelphia, rushing to make it in time. He arrived at 10 p.m., while Shockley was doing a solo tango with a rose in his mouth. One of the engineers described Noyce’s arrival to his biographer Berlin: “He hadn’t shaved, he looked like he’d been living in his suit for a week—and he was thirsty. There was a big goddamn bowl of martinis on the table there. Noyce picks up the goddamn bowl, and starts drinking [from] it. Then he passes out. I said to myself, ‘this is going to be a whole lot of fun.’?”62

SHOCKLEY UNRAVELS

Some leaders are able to be willful and demanding while still inspiring loyalty. They celebrate audaciousness in a way that makes them charismatic. Steve Jobs, for example; his personal manifesto, dressed in the guise of a TV ad, began, “Here’s to the crazy ones. The misfits. The rebels. The trouble-makers. The round pegs in the square holes.” Amazon’s founder Jeff Bezos has that same ability to inspire. The knack is to get people to follow you, even to places they may not think they can go, by motivating them to share your sense of mission. Shockley did not have this talent. Because of his aura, he was able to recruit brilliant employees, but soon after they began working together, they were rankling under his ham-fisted management, just as Brattain and Bardeen had.

One useful leadership talent is knowing when to push ahead against doubters and when to heed them. Shockley had trouble striking this balance. One case arose when he devised a four-layer diode that he thought would be faster and more versatile than a three-layer transistor. In some ways, it was the first step toward an integrated circuit, because the new device would perform tasks that would require four or five transistors on a circuit board. But it was difficult to manufacture (the paper-thin silicon had to be doped differently on either side), and most of the ones that came off the line proved useless. Noyce tried to get Shockley to abandon the diode, but to no avail.

Many transformative innovators have been similarly stubborn about pushing a new idea, but Shockley crossed the line from being visionary to being hallucinatory, turning him into a case study in bad leadership. In his pursuit of the four-layer diode, he was secretive, rigid, authoritarian, and paranoid. He formed private teams and refused to share information with Noyce, Moore, and others. “He couldn’t face up to the fact that he’d made a bad decision so he started blaming everybody around him,” recalled Jay Last, one engineer who resisted him. “He was very abusive. I went from being his fair-haired boy to being one of the causes of all his problems.”63

His paranoia, already diffusing into his personality layers, was manifest in disruptive incidents. For example, when a secretary at the firm cut her finger opening a door, Shockley became convinced it was a sabotage scheme. He ordered everyone in the firm to take a lie detector test. Most refused, and Shockley had to back down. It was later discovered that the cut was caused by the remains of a thumbtack that had been used to post a notice on the door. “I don’t think ‘tyrant’ begins to encapsulate Shockley,” Moore said. “He was a complex person. He was very competitive and even competed with the people that worked for him. My amateur diagnosis is he was also paranoid.”64

Worse yet, Shockley’s infatuation with the four-layer diode turned out to be misplaced. Sometimes the difference between geniuses and jerks hinges on whether their ideas turn out to be right. If Shockley’s diode had proved practical, or if he had evolved it into an integrated circuit, he may have again been regarded as a visionary. But that didn’t happen.

The situation became even worse after Shockley, along with his erstwhile partners Bardeen and Brattain, won the Nobel Prize. When Shockley got the call early on the morning of November 1, 1956, his first reaction was that it was a Halloween trick. Later he would become darkly suspicious that there were people who had tried to deny him the prize, and he would write the Nobel committee seeking information about those who wrote in opposition to him, a request that was denied. But for that day, at least, there was a respite in the tension and a chance to celebrate. A champagne lunch was held at Rickeys.