Биотехнология: что это такое? - Вакула Владимир Леонтьевич. Страница 41
Сделали они это следующим образом: некоторых подопытных животных перед тем, как ввести им эндотоксин, заразили БЦЖ. А что такое БЦЖ, надеюсь, в наши дни известно если не всем, то большинству наверняка. Это — высокоэффективная противотуберкулезная вакцина. Противотуберкулезную прививку делают младенцам еще в родильном доме. И на протяжении многих лет ослабленные, но живые палочки Коха, введенные в организм новорожденного, стабильно поддерживают в нем иммунитет к туберкулезу.
Но зачем все-таки понадобилась ученым вакцинация мышей БЦЖ? Для того чтобы выявить, в каких именно клетках станет нарабатываться ФНО. Выявить и проследить за ними на фоне противоопухолевого эффекта, свойственного противотуберкулезной вакцине.
Ответ на поставленный экспериментом вопрос удивил самих исследователей: ФНО продуцировался... макрофагами, знаменитыми мечниковскими «пожирателями».
Пройдет некоторое время, и будет установлено, что и в человеческом организме ФНО продуцируется клетками иммунной системы, в том числе и макрофагами. И снова, в который уже раз подтвердится идея всемогущества защитных сил организма, его иммунной системы. Но как, каким образом воздействует ФНО на опухолевую ткань? С помощью чего среди великого множества клеток он безошибочно узнает в организме те, в которых уже начался патологический процесс?
Вопросы эти еще ждут своих ответов. Шесть лет назад Л. Олд с коллегами так и не смогли до конца рассекретить открытый ими ФНО. Кто знает, может окончательно решить эту проблему сможет один из тех что держит сейчас в руках эту книгу?
А пока ученые продолжают биться над загадкой регрессии опухолевой клетки. Они многое умеют и не менее знают о факторе ее некроза. Так, уже несколько лет назад была решена проблема выработки ФНО в нужных количествах, освоена технология его очистки, группой исследователей под руководством Д. Гелена клонирован ген, кодирующий продуцирование человеческого ФНО, эти же работы, и с не меньшей виртуозностью, повторены сразу несколькими лабораториями, занимающимися медицинской биотехнологией.
Сегодня сразу в нескольких лабораториях одновременно изучается механизм узнавания ФНО злокачественных клеток и молекулярная структура самого фактора, поставлено на повестку дня и изучение поведения ФН0 ц в доброкачественных клетках.
И последнее — решение проблемы клонирования гена фактора некроза опухолей сделало в конце концов реальным то, чем столь бесстрашно занимался в конце прошлого века нью-йоркский врач Уильям Б. Коли — клиническую проверку, а затем и лечение онкологических больных с помощью ФНО.
Как развернутся события в дальнейшем, оправдает ли фактор некроза возлагаемые на него надежды — покажет время и только оно. Сейчас же советую читателям обратить внимание на следующие факты; путь к ФНО начался с идентификации эндотоксина, полученного, кстати, методами генетической инженерии из бактериальных штаммов. Самый яркий эффект воздействия ФНО на опухолевые ткани проявился когда-то на фоне противотуберкулезной вакцины (а теперь — в присутствии интерферона), основу которой составляют живые микроорганизмы (палочки Коха); продуцируют ФНО макрофаги и т. д. и т. п.
Одним словом, за что ни возьмись — везде просматриваются проблемы биотехнологические. Вот почему, завершая свой небольшой рассказ о ФНО и связанных с ним исследовательских изысканиях, хочу выразить надежду, что «ключ», с помощью которого наука откроет когда-нибудь и эту заветную дверь, окажется биотехнологической природы.
Закат солнца и дорога в цветахЧто ж, как говорится, будем надеяться. Надеяться и работать, ибо дорогу, как известно, способен осилить только идущий. Но если кое-кому из моих читателей такая дорога представляется в виде некоего широкого столбового тракта, ведущего в бесконечную и непременно светлую даль, то должен сразу сказать, что вы, друзья, заблуждаетесь. Ухабы и пропасти, холмы и возвышенности, завалы и просветы — чего только нет на этом пути! И если человек, избравший для себя в жизни путь познания, не обладает должным мужеством и бескомпромиссной настойчивостью, ему рано или поздно, но придется с него свернуть.
По тому нелегкому пути всегда, во все времена шли первооткрыватели, иногда встречаясь друг с другом на каком-то из его отрезков, чаще оставаясь незамеченными даже теми, кто шел где-то рядом к той же самой заветной цели. Лишь изредка информация о трудностях, которые приходилось им преодолевать, становилась достоянием общественности. Гораздо чаще она так и оседала на полках архивов и в дневниковых исповедях.
События, извечно вершившиеся на постоянном пути поиска истины, по праву можно было б назвать подвигом. Но люди науки, как правило, скромны и не терпят громких слов, называя возвышенные поступки и не менее большие дела вполне будничными именами.
Вот, как говорится, совсем свежий пример. В одной из московских газет появляется весьма скромная по размерам информация, предваряющаяся не менее скромным сообщением, набранным мелким шрифтом. Сообщение гласит: «Сначала исследователи ввели препарат себе. На этот шаг отважились одиннадцать человек — почти все, кто участвовал в работе. Так начались испытания первой в стране вакцины, полученной методом генной инженерии, — оспенно-гепатитной».
Но зачем понадобилась такая вакцина? И разве два столетия назад «отец иммунологии» Эдвард Дженнер не осуществил первую в мире вакцинацию, втерев вирус коровьей оспы в ранку восьмилетнего мальчика? Отсюда, кстати, и ведет свое происхождение общеизвестный термин «вакцина», ведь «васса» по-латыни — корова.
Нет, все вышесказанное соответствует действительности. Исторический факт вакцинации, осуществленной Э. Дженнером, не вызывает ни у кого никакого сомнения. Но время нередко открывает в старом, казалось бы, давно и тщательно изученном, такие грани и такие возможности, что с ними связывают гораздо большие надежды и перспективы, чем с первопричинным явлением.
Так началась и новая жизнь «старой» оспенной вакцины. По крайней мере, еще три года назад американский журнал «Science» сообщил о том, что группе ученых под руководством Э. Паолетти удалось на основе вируса коровьей оспы, пользуясь методом генетической инженерии, создать поливалентную вакцину. Лабораторные исследования, проведенные со всей тщательностью и типично научной педантичностью, вполне убедительно доказали, что она успешно защищает подопытных кроликов от гепатита В, герпеса и гриппа одновременно. Но почему все-таки и на сей раз предпочтение было отдано вирусу коровьей оспы?
Да потому, что это большой, крупный вирус, в его ДНК можно ввести сразу несколько чужеродных генов, и она начнет успешно синтезировать кодируемые ими белки. В том числе и антигены, на которые иммунная система вакционированного животного образует антитела, способные нейтрализовывать сразу три вида вируса — герпеса, гепатита В и гриппа. Но как все-таки рождалась поливакцина?
Поэтапно, постепенно «складываясь» из вакцин, созданных методом рекомбинантной ДНК против каждого в отдельности из входящих в ее состав вирусов. Порядок «монтажных» работ был приблизительно следующим: заранее выделенный ген, кодирующий антиген вируса гриппа, исследователи встроили в фрагмент ДНК вируса осповакцины.
Приключения «гибридного фрагмента» отнюдь на этом не закончились. Ему еще предстояло вместе с вирусом осповакцины проникнуть в клетки иммунизированного животного, чтобы, как только вирус начнет размножаться, встроиться, вписаться в его ДНК. В результате этих трансформаций получилась вакцина, состоящая из двух компонентов — вакцин против оспы и гриппа.
Аналогичная процедура проделывалась учеными и с генами вируса герпеса, гепатита. Манипуляции и превращения длились до тех пор, пока долгожданная вакцина, очищенная путем клонирования, размноженная в культуре ткани, не оказалась готовой к применению. Но пока что на... животных. По крайней мере, Э. Паолетти, автор вышеназванных работ, заявивший о них в печати три года назад, на ближайшее время клинических испытаний на людях проводить не собирался. И вдруг... сообщение в московской прессе: «Вирус поможет врачам в борьбе с опасным заболеванием» и то самое интригующее вступление к информации, которое я чуть выше цитировал.