Биотехнология: что это такое? - Вакула Владимир Леонтьевич. Страница 42
В чем же суть исследований, осуществленных советскими учеными? В том, чтобы, «обманув» бдительность иммунитета, ввести в организм не возбудитель гепатита В — грозного заболевания, нередко поражающего ребенка еще в утробе матери, а лишь его «портрет» — осколок, кусочек белковой оболочки вируса. Этого, как и предполагали исследователи, оказалось вполне достаточно, чтобы иммунная система организма, и прежде всего ее верные солдаты — лимфоциты запомнили, как именно выглядит «лицо врага».
Обрывок, «фотографию» белковой оболочки вируса гепатита представил ученым Институт органического синтеза АН Латвии, в лабораториях которого получили и, естественно, изучили ДНК вируса гепатита В. В результате кропотливых, ювелирных по механике исполнения работ исследователям удалось отыскать в «главной молекуле», как все чаще называют ДНК, тот единственный ген, который кодирует продуцирование вирусного белка.
Человек с портретом проходит через турникетТогда-то и родилась идея вшить его в вирус осповакцины, реализовать которую взялись ученые сразу трех институтов: Института общей генетики АН СССР, Московского НИИ вирусных препаратов, Института биохимии и физиологии микроорганизмов АН СССР. «Работать с вакциной удобно, — рассказывает доктор медицинских наук А. Альтштейн, — нужный ген можно вставить один раз, а потом разводить измененные вирусы в лаборатории».
Правда, существует и другой путь «внедрения» нужного фрагмента белковой оболочки гепатитного вируса в ДНК возбудителя оспы. По нему как раз и пошли ученые из Института молекулярной биологии АН СССР и Института вирусологии АМН СССР, «пересаживающие» ДНК вируса гепатита В в дрожжевые грибки, с их помощью нарабатывая вирусные белки-антигены. Теперь оставалось только ввести эти антигены в кровь иммунизируемого животного (а в дальнейшем и человека), и защита от гепатита В гарантирована.
Но, согласитесь, один путь вовсе не исключает другого, поскольку у каждого свои преимущества и достоинства. Так, препарат, полученный с помощью традиционных биотехнологических методов, может оказаться особенно хорош при необходимости нанесения возбудителю «массированного удара», столь необходимого, например, во время вспышки эпидемии. Зато живая вакцина незаменима при массовой профилактике. К тому же производство ее, по сравнению с «конкурирующей», намного дешевле. А это тоже немаловажное обстоятельство. И кто знает, может, создание вакцины оспенно-гепатитного назначения отнюдь не завершает поиска в данном направлении? Может, стоит всерьез подумать и над созданием поливалентных вакцин, состоящих из трех и более компонентов, как это делают американские исследователи? По крайней мере, такая идея уже не дает покоя нашим ученым.
Что ж, работы впереди — непочатый край. Медицина и здравоохранение всех стран ждут не дождутся вакцин против рака и СПИДа. И чем раньше эта проблема будет решена, тем больше человеческих жизней сохранит она на планете.
Но при чем здесь вакцина против рака и СПИДа, ведь разговор шел о вакцинах, в ДНК которых еще вроде бы никому не удавалось вписать ни возбудитель СПИДа, ни онкоген, предвижу я недоуменный вопрос читателя.
Да, пока не удавалось. Но разве такая возможность исключается? Отнюдь. Более того, если долгожданная антиспидовая или антираковая вакцина все же в конце концов станет реальностью, то, вне всяких сомнений, в основе ее будет лежать принцип повышения защитных сил организма. Тот самый принцип, который и сегодня является определяющим для всех используемых в медицине и животноводстве вакцин. Ибо иммунитет и есть тот самый мощный аккумулятор всех потенций и сил организма, концентрированная энергия которого в состоянии одолеть любую инфекцию. Помните профессора Юрия Ивановича Морозова, впервые в мире осуществившего пересадку комплекса тимус-грудина кубинским ребятишкам, родившимся с дефектным тимусом?
Точно таким способом ему удалось спасти от смерти и нескольких обреченных онкологических больных, пересадив им тимус погибших во время родов младенцев. Вновь обретшие защитные силы люди победили рак. Их организм, еще недавно почти разрушенный всевозможными химио- и радиотерапиями, сам, не получая извне никакой посторонней помощи, принудил регрессировать раковые клетки, как бы повернув болезнь в обратном направлении.
А раз так, сам собою напрашивается вывод, то для лечения СПИДа и рака может подойти любая вакцина, лишь бы ее действие сводилось к мобилизации защитных сил иммунитета.
Сегодня, по крайней мере теоретически, существует несколько путей создания вакцин, способных защитить человечество от СПИДа и от рака. Более того, такие вакцины созданы. Но, как нередко случается в жизни, на поверку они оказались не столь эффективными, как ожидалось. Но почему?
Потому что любая теория, как правило, хоть на немного, на самую малость; но все же расходится с практикой.
Как ведь рассуждали специалисты, принимаясь за дело? Чтоб на основе конкретного микроорганизма (вируса или бактерии) создать живую биологическую систему, вырабатывающую защитные антитела, необходимо прежде всего найти такой микроорганизм-носитель. И потом уже со всей строгостью подойти к оценке его деловых достоинств. Он не должен, во-первых, вызывать инфекционное заболевание, во-вторых, провоцировать рак и, наконец, в-третьих, обязан обладать талантом стимулирования иммунной системы (выработки антител и защитной клеточной реакции).
И здесь исследователям, как говорится, крупно повезло, потому что вирус, отвечающий всем вышеназванным требованиям, был науке давно известен. И не только ей — всему человечеству. Ведь речь идет все о том же вирусе осповакцины.
Значит, первую часть проблемы — выбор микроорганизма-носителя, можно было считать решенной. Далее события развивались по хорошо отработанной генетической инженерией схеме: в геном вируса вводится ген белка возбудителя СПИДа — и дело, казалось бы, можно было считать завершенным. Ведь теперь, размножаясь в месте прививки, вирус вакцины синтезировал не только собственные белки, но и белки вируса СПИДа, а значит и стимулировал наработку защитными силами организма антител.
Приблизительно так и создавал свой вариант вакцины американский ученый Б. Мосс. Экспериментальная проверка препарата на обезьяне подтвердила его эффективность: организм животного в больших количествах вырабатывал антитела к вирусу — возбудителю СПИДа.
И... опять загадка — антитела-то вырабатывались, а животное СПИДом заболевало. Значит, решили ученые, возможно существование антител, не нейтрализующих вирус-возбудитель! Вскоре догадка подтвердилась: такие антитела действительно есть в организме, и, более того, некоторые из них не только не «гасят» инфекцию, как им вроде бы полагалось в силу «должностной инструкции», но стимулируют ее. Вот так защита!
Однако известно: в науке и отрицательный результат — результат. А раз так, то почему бы не подойти с этих неизвестных прежде позиций к клиническому обследованию больных?
Сказано — сделано. И что же? В крови некоторых из них обнаружили антитела к вирусу-возбудителю. Антитела были, а защитной реакции не наблюдалось...
Так что же — тупик?
Отнюдь... Но чтобы понять, с какой именно проблемой столкнулись исследователи на сей раз, нам придется вернуться к событиям пятилетней давности — к году 1984-му.
Чем же знаменит в истории медицины этот год? Тем, что именно тогда Нобелевским лауреатом стал Нильс Ерне, «самый умный, — по словам другого нобелевского лауреата Ф. Бернета, — из ныне живущих иммунологов». Вместе с Н. Ерне этой чести были удостоены Цезарь Мильштейн и Георг Кёлер. Последние — за разработку? метода моноклональных антител — одного «из самых? важных методических достижений в медицинской биологии в 70-е годы», как охарактеризовал его Комитет пем Нобелевским премиям.
Итак, чем же знаменит Н. Ерне? Своими теоретическими концепциями. Их три, и каждая из них представь ляет собой краеугольный камень современной иммунологии.