Математика. Утрата определенности. - Клайн Морис. Страница 125

Но разве нет власти, способной наложить запрет на массовое производство новых результатов на том основании, что, прежде чем продвигаться дальше, необходимо навести порядок в основаниях математики? Редакторы математических журналов могли бы отказаться печатать новые работы. Но редакторы и рецензенты — такие же математики и находятся в таком же положении, как и большинство их коллег — и работы, хотя бы отдаленно отвечающие требованиям строгости, т.е. требованиям начала XX в., охотно принимаются к печати и публикуются. Если король голый и придворным также нечем прикрыть наготу, то появление голого человека никого уже не удивляет и не приводит в замешательство. Как сказал однажды Лаплас, прогресс стоит человеческому разуму меньших усилий, чем познание самого себя.

Как бы то ни было, проблемы оснований отступили для многих математиков на задний план. Правда, те, кто занимается математической логикой, уделяют основаниям математики значительное внимание, но математическую логику нередко считают лежащей за пределами собственно математики.

Не следует думать, будто все математики, игнорирующие проблемы оснований и действующие так, словно этих проблем никогда не было, достойны осуждения. Некоторые из них серьезно озабочены применением математики и в подтверждение своего modus vivendi[образа жизни] ссылаются на примеры из истории математики. Как мы уже видели (гл. V-VI), несмотря на отсутствие логических обоснований системы чисел и правил действий над ними, а также дифференциального и интегрального исчисления, по поводу чего на протяжении почти ста лет велись жаркие споры, математики продолжали использовать материал и получать новые результаты, эффективность которых не вызывала никаких сомнений. Приводимые доказательства были грубыми и даже содержали прямые ошибки. Когда обнаруживались противоречия, математики пересматривали свои рассуждения и вносили в них надлежащие изменения. Часто и исправленный вариант доказательства не был строгим даже по тем критериям, которые предъявлялись к строгости в конце XIX в. Если бы математики вздумали ждать до тех пор, пока им удастся достичь уровня строгости, они не смогли бы продвинуться ни на шаг. {178}Как заметил Эмиль Пикар, если бы Ньютон и Лейбниц знали, что непрерывные функции не обязательно должны быть дифференцируемыми, математический анализ никогда не был бы создан. В прошлом смелость и разумная осторожность приводили к наилучшим результатам.

Философ Джордж Сантаяна отметил в своей книге «Скептицизм и слепая вера», что скептицизм и сомнения важны для мышления, тогда как слепая вера важна для поведения. Значительная часть математических работ отличается высокими достоинствами, и, если мы хотим, чтобы эти достоинства приумножались, математические исследования необходимо продолжать. Слепая вера позволяет действовать без колебаний.

Лишь немногие математики проявили озабоченность по поводу спорных вопросов в основаниях математики, обесценивающих их работу. Эмиль Борель, Рене Бэр и Анри Лебег открыто выразили сомнения в пригодности теоретико-множественных методов, но продолжали пользоваться этими методами с некоторыми оговорками относительно надежности получаемых с их помощью результатов. Борель заявил в 1905 г., что охотно допускает всякого рода рассуждения о канторовских трансфинитных числах, поскольку эти числа оказываются весьма полезными в важных математических исследованиях. Но курс, избранный Борелем и некоторыми другими математиками, не следует расценивать как проявление своего рода математического легкомыслия. Прислушаемся, что сказал по этому поводу Герман Вейль, один из наиболее глубоких математиков современности и, несомненно, наиболее эрудированный из них:

Сейчас мы менее, чем когда-либо, уверены в первичных основаниях математики и логики. Мы переживаем свой «кризис» подобно тому, как переживают его все и вся в современном мире. Кризис этот продолжается вот уже пятьдесят лет [Вейль написал эти строки в 1946 г.]. На первый взгляд кажется, будто нашей повседневной работе он особенно не мешает. Тем не менее я должен сразу же признаться, что на мою математическую работу этот кризис оказал заметное практическое влияние: он направил мои интересы в области, которые я считал относительно «безопасными», и постоянно подтачивал энтузиазм и решимость, с которой я занимался своими исследованиями. Мой опыт, вероятно, разделили и другие математики, небезразличные к тому, какое место их собственная научная деятельность занимает в этом мире в общем контексте бытия человека, интересующего, страдающего и созидающего.

Коль скоро о степени обоснованности математики мы намереваемся судить по ее приложениям, сразу же возникает вопрос: насколько эффективна математика в этом отношении? Рассказывая о математике, созданной и применявшейся до XIX в., мы привели несколько примеров, доказывающих, сколь хорошо математика описывает и предсказывает явления реального мира (гл. III). Но в XIX в. математики, руководствуясь, несомненно, вескими доводами, ввели ряд понятий и теорий, не заимствованных непосредственно из природы и даже, казалось, противоречивших ей, например бесконечные ряды и неевклидовы геометрии, комплексные числа и кватернионы, необычные алгебры и бесконечные множества различной мощности, а также другие не менее странные объекты, которых мы не касались. Никаких оснований ожидать априори, что эти понятия и теории окажутся применимыми, разумеется, не было. Итак, прежде всего убедимся, что вся современная математика работает в приложениях, причем делает это великолепно.

Все величайшие достижения физики за последние сто лет — теория электромагнитного поля, теория относительности и квантовая механика — широко используют современную математику. Мы рассмотрим лишь теорию электромагнитного поля, наиболее знакомую неспециалистам. В первой половине XIX в. физики и математики провели многочисленные исследования электричества и магнетизма. Им удалось получить небольшое число математических законов, описывающих различные электрические и магнитные явления. В 60-е годы XIX в. Джеймс Клерк Максвелл поставил перед собой задачу собрать все эти разрозненные законы и выяснить, насколько они совместимы. Максвелл обнаружил, что для математической совместимости необходимо ввести в уравнения еще один член, который он назвал током смещения.Единственный физический смысл, который Максвелл мог придать току смещения, состоял в утверждении, что источник электричества (грубо говоря, проводник с током) должен быть источником электромагнитного поля (т.е. от него исходит — и распространяется в пространстве — электромагнитная, волна). Испускаемые источником электромагнитные волны имеют различные частоты. Это могут быть радиоволны, улавливаемые антеннами наших радиоприемников и телевизоров, гамма-лучи, видимый свет, инфракрасное и ультрафиолетовое излучение. Так, из чисто математических соображений Максвелл предсказал существование огромного класса ранее не известных явлений и пришел к правильному выводу об электромагнитной природе света.

Электромагнитные волны, как и гравитация (гл. III), обладают одной замечательной особенностью: мы не имеем ни малейших представлений о том, какова их физическая природа. Существование этих волн подтверждается только математикой — и только математика позволила инженерам создать радио и телевидение, которые нашим предкам показались бы поистине сказочными чудесами.

То же самое можно сказать и о всевозможных явлениях атомной и ядерной физики. Математики и физики-теоретики говорят о полях (гравитационном, электромагнитном, поле электрона и других частиц) так, словно все эти поля — «материальные» волны, которые распространяются в пространстве и вызывают различные наблюдаемые эффекты, подобно, скажем, волнам на воде, бьющим о борт судна или разбивающимся о скалы. Но все эти поля не более чем фикции. Их физическая природа нам неизвестна. Они лишь отдаленно связаны с наблюдаемыми явлениями, например c ощущениями света, звука, движения материальных тел, с радио и телевидением. Беркли некогда назвал производную призраком навсегда ушедших величин. Современная физическая теория имеет дело с призраком материи. {179}Но, формулируя математические законы, которым подчиняются фиктивные поля, не имеющие наглядных аналогов в реальности, и выводя из этих законов логические следствия, мы приходим к выводам, допускающим при надлежащем переводе на язык физики проверку c помощью чувственных восприятий.