Математика. Утрата определенности. - Клайн Морис. Страница 127
Даже если законы логики и некоторые основные физические принципы выведены из опыта, в процессе длинного математического доказательства, требующегося для получения физически значимого заключения, эти законы используются однократно — и все наше доказательство опирается только на логику. Чисто математические рассуждения позволяют предсказывать некоторые явления. Так, на основе математического предсказания была открыта планета Нептун. Означает ли это, что природа подтверждает логические принципы? Иначе говоря, существуют ли (как угодно открытые) законы логики, которые говорили бы, как должна вести себя природа в тех или иных случаях? То, что целые теория, состоящие из сотен теорем и тысяч дедуктивных умозаключений об абстрактных понятиях, все же отклоняются от реальности не более, чем исходные аксиомы, убедительно свидетельствуют о способности математики описывать и предсказывать реальные явления с поразительной точностью. Почему длинные цепочки, чисто умозрительных заключений должны приводить к выводам, столь хорошо согласующимся с природой? В этом — величайший парадокс математики.
Итак, перед человеком стоит загадка двоякого рода. Почему математика безотказно, срабатывает даже там, где заключение, требующее сотен дедуктивных выводов, оказывается столь же применимым, как и исходные аксиомы, хотя физические явления описываются не на математическом, а на физическом языке? И почему математика эффективна там, где мы располагаем лишь непроверенными гипотезами о сущности физических явлений и где при описании этих явлений вынуждены почти целиком полагаться на одну математику? От этих вопросов нельзя бездумно отмахнуться: слишком уж многое в нашей науке и технике зависит от математики. Может быть, эта наука, хотя ее и используют как непобедимое знамя истины, одерживает свои победы с помощью какой-то таинственной внутренней силы и действительно наделена какими-то волшебными чарами?
Этот вопрос интересовал и продолжает интересовать многих. Неоднократно задавал его себе и Альберт Эйнштейн в книге «Вокруг теории относительности» (1921):
В этой связи возникает вопрос, который волновал исследователей всех времен. Почему возможно такое превосходное соответствие математики с реальными предметами, если сама она является произведением только человеческой мысли, не связанной ни о каким опытом? Может ли человеческий разум без всякого опыта, путем только одного размышления понять свойства реальных вещей?
…Если теоремы математики прилагаются к отражению реального мира, они не точны; они точны до тех пор, пока они не ссылаются на действительность.
Далее Эйнштейн поясняет, что аксиоматизация математики сделала это различие очевидным. Хотя Эйнштейн понимал, что аксиомы математики и принципы логики выведены из опыта, его интересовало, почему длинная и сложная цепь чисто логических рассуждений, которые не зависят от опыта и используют понятия, созданные человеческим разумом без всякой апелляции к эксперименту и природным феноменам, может приводить к выводам, находящим столь широкие применения.
Современное объяснение необычайной эффективности математики восходит к Иммануилу Канту. Кант утверждал (гл. IV), что мы не знаем и не можем знать природы. Мы располагаем лишь чувственными восприятиями. Наш разум, обладая врожденными интуитивными представлениями о пространстве и времени, организует чувственные восприятия в соответствии с тем, что диктуют эти врожденные представления. Так, наши пространственные восприятия мы организуем в соответствии с законами евклидовой геометрии, потому что этого требует наш разум. Упорядоченные разумом, пространственные восприятия продолжают подчиняться законам евклидовой геометрии. Разумеется, Кант заблуждался, считая евклидову геометрию единственно возможной, но главное в его учении заключалось в другом: человеческий разум определяет, как ведет себя природа при неполном (частичном) объяснении. Разум формирует наши концепции пространства и времени. Мы видим в природе то, что предопределено нам видеть нашим разумом.
Взглядов, близких к воззрениям Канта, но выходящих далеко за их пределы, придерживался один из выдающихся физиков нашего времени — Артур Стэнли Эддингтон (1882-1944). По мнению Эддингтона, — человеческий разум решает, как должна себя вести природа:
…там, где наука ушла особенно далеко в своем развитии, разум лишь получил от природы то, что им было заложено в природу. На берегах неизвестного мы обнаружили странный отпечаток. Чтобы объяснить его происхождение, мы выдвигали одну за другой остроумнейшие теории. Наконец нам все же удалось восстановить происхождение отпечатка. Увы! Оказалось, что это наш собственный след.
В XX в. предложенное Кантом объяснение эффективности математики было подробно разработано Уайтхедом и поддержано Брауэром в работе 1923 г. Основная идея неокантианского объяснения состоит в том, что математика является не чем-то независимым от явлений, происходящих во внешнем мире, и применимым к ним, а элементом нашего способа восприятия явлений. Физический мир не дан нам объективно. Он является лишь нашей интерпретацией ощущений, конструкцией из них, и математика — основной инструмент, позволяющий упорядочивать ощущения. Из сказанного почти автоматически следует, что математика описывает внешний мир в той мере, в какой он известен человеку. То, что математическая организация ощущений оказывается одинаковой у многих людей, неокантианцы объясняют, ссылаясь на сходство в функционировании человеческого разума или на общность языка и культуры, вынуждающую различных людей принимать одну и ту же математическую схему. В пользу такого объяснения свидетельствует, например, господствующее положение, занимаемое евклидовой геометрией, хотя она не является последним словом в вопросах, связанных со структурой физического пространства. То же можно сказать и о гелиоцентрической системе мира. Своим происхождением она обязана отнюдь не расхождениями между птолемеевой теорией и наблюдениями. Кроме того, если бы теория Птолемея была сохранена и усовершенствована в соответствии с новыми наблюдениями, то, несмотря на несколько большую математическую сложность, она могла бы служить потребностям астрономов и мореплавателей с не меньшим успехом, чем теория Коперника.
Суть изложенных выше взглядов сводится к следующему. Мы пытаемся абстрагировать из сложного переплетения явлений какие-то простые системы, свойства которых допускают математическое описание. Поразительно точным математическим описанием природы мы обязаны силе этой абстракции. Более того, мы видим лишь то, что позволяет нам видеть наша математическая «оптика». Ту же мысль мы находим, в частности, в «Прагматизме» философа Уильяма Джеймса: «Все грандиозные достижения математики и естественных наук… проистекают из нашего неутомимого желания придать миру в наших умах более рациональную форму, чем та, которую придал ему грубый порядок нашего опыта».
Один из современных авторов выразил эту мысль более «поэтически»: «Реальность — самая очаровательная из куртизанок, ибо делает то, что вы ожидаете от нее в данный момент, но она отнюдь не скала, на которой может утвердиться ваш дух, ибо соткана из призрачных видений. Реальность не существует вне ваших мечтаний, и зачастую это не более чем блик, отбрасываемый вашими мыслями на лицо — природы».
Однако кантовское объяснение, согласно которому мы видим в природе лишь то, что разрешает нам видеть наш разум, не дает полного ответа на вопрос, почему математика эффективна. Такие достижения науки послекантовского периода, как создание теории электромагнитного поля, вряд ли можно отнести к порождениям чистого разума или способности разума упорядочивать ощущения. Ведь, скажем, радио и телевидение существуют вовсе не потому, что разум организовал какие-то ощущения в соответствии с некоторой «внутренней структурой», позволившей нам заняться разработкой радио и телевидения как следствий врожденных представлений разума о том, как природа должна себя вести.