Большая Советская Энциклопедия (БЕ) - Большая Советская Энциклопедия "БСЭ". Страница 46
и-РНК синтезируется на матрице ДНК. В уникальной последовательности нуклеотидов ДНК линейно «записана» генетическая информация о последовательности аминокислотных остатков в полипептидных цепочках Б.
В новообразованной и-РНК получается нуклеотидная последовательность, соответствующая матричной ДНК, — комплементарная последовательность, которая определяет первичную структуру синтезирующейся полипептидной цепочки. Включение каждой аминокислоты обусловливается (кодируется) определёнными группами из трёх нуклеотидных остатков (триплетами). Каждой аминокислоте соответствует несколько триплетов, или кодонов, для которых теперь установлены состав и последовательность нуклеотидов (см. Генетический код ).
В полисомах т-РНК, нагруженная аминокислотой, присоединяется к соответствующим кодонам и-РНК. Это присоединение совершается внутри рибосомы в силу взаимодействия комплементарных оснований: аденина с урацилом или тимином и гуанина с цитозином. При этом т-РНК присоединяется к кодону содержащимся в ней комплементарным триплетом, называемым антикодоном. По мере продвижения рибосомы по нуклеотидной цепочке и-РНК к соседним кодонам присоединяются новые молекулы т-РНК, нагруженные аминокислотами. Предыдущая т-РНК при этом освобождается, присоединяя свою аминокислоту карбоксильным концом к аминогруппе новой аминокислоты с образованием пептидной связи. Т. о., полипептидная цепочка растет по мере продвижения рибосомы по и-РНК и освобождается по завершении своего синтеза, пройдя соответствующий участок и-РНК, комплементарный данному структурному гену (цистрону ) ДНК.
Процесс биосинтеза Б. не исчерпывается образованием полипептидных цепочек, т. е. созданием первичной структуры Б. Далее происходит свёртывание цепочек в спирали, их «укладка» и взаимодействие, и образование вторичной, третичной и, иногда, четвертичной структуры. Однако возможно, что приведённая схема не исчерпывает всех путей биосинтеза Б.
Весьма важна проблема регуляции биосинтеза Б., определяющей включение или выключение синтеза тех или иных Б. под влиянием внутренних (в том числе дифференцировки клеток и тканей) или внешних импульсов и создающей условия для синтеза Б. в данной дифференцированной клетке.
Теоретическая и экспериментальная разработка проблемы биосинтеза Б. имеет не только важнейшее теоретическое, но и практическое значение, поскольку, открывая подходы к воздействию на этот процесс, она намечает пути лечения ряда заболеваний, а также влияния на продуктивность многих сельскохозяйственных растений и животных.
В связи с важным значением Б. разрабатываются новые методы получения Б. и аминокислот путём промышленного микробиологического синтеза, т. е. выращиванием микробов (например, дрожжей и др.) на дешёвом сырье (например, нефти, газе и др.).
И. Б. Збарский .
Лит.: Волькенштейн М. В., Молекулы и жизнь, М., 1965, гл. 3—5; Гауровиц Ф., Химия и функции белков, пер. с англ., [2 изд.], М., 1965; Биосинтез белка и нуклеиновых кислот, под ред. А. С. Спирина, М., 1965; Сисакян Н. М. и Гладилин К. Л., Биохимические аспекты синтеза белка, в кн.: Успехи биологической химии, т. 7, М., 1965, с. 3; Молекулы и клетки. [Сб. ст.], пер. с англ., М., 1966, с. 7—27, 94—106; Шамин А. Н., Развитие химии белка, М., 1966; Введение в молекулярную биологию, пер. с англ., М., 1967.
Рис. 1. Соединение аминокислот. Верхняя строка — свободные аминокислоты с боковыми группами R1, R2, R3; нижняя строка — аминокислоты соединены пептидными связями.
Рис. 4. Общая схема биосинтеза белков.
Рис. 3. Модель молекулы миоглобина (пространственная конфигурация молекулы).
Рис. 2. Схема трёхмерной структуры фермента лизоцима. Кружки — аминокислоты; тяжи — пептидные связи; заштрихованные прямоугольники — дисульфидные связи. Видны спирализованные и вытянутые участки полипептидной цепи.
Белковомолочность
Белковомоло'чность, один из важных качественных показателей молочной продуктивности животных. Выражается процентным или весовым содержанием белка в молоке. В молоке различных видов сельскохозяйственных животных содержится общего белка в среднем (%): у коров 3,3—3,4, у буйволиц 4,0, у зебу 4,3, у ячих 5,0, у кобыл 2,1, у ослиц 2,2, у верблюдиц 3,5, у овец 6,0, у коз 4,0, у свиней 7,2. Содержание белка в молоке зависит также от породы, периода лактации, кормления и содержания, здоровья, физиологического состояния животного и других факторов. Например, содержание белка в молоке коров ярославской породы 3,5%, холмогорской 3,3%. У одной и той же породы наибольшее содержание белка в молозиве от 14 до 22%; к 10-му дню после отёла в молоке — среднее для породы, ко 2—3-му мес лактации — наименьшее, к концу лактации опять увеличивается. В период половой охоты, линьки, при истощении количество белка в молоке снижается. Повышенное содержание протеина в рационе, как правило, сопровождается увеличением белка в молоке, но при организации кормления следует учитывать, что белковый перекорм физиологически вреден и экономически невыгоден. Возраст животных и техника доения существенного влияния на Б. не оказывают. Б. — качество наследственное, поэтому в племенном животноводстве необходимо вести отбор и подбор по этому качеству. Большое значение имеет проверка и оценка производителей по Б. их дочерей.
Лит.: Маркова К. В., Альтман А. Д., Какие факторы влияют на состав молока, М., 1963; Соловьев А. А., Веселова И. А., Содержание белковых веществ в молоке и пути их повышения, «Труды Вологодского молочного института», 1963, в. 46; Методы определения белка в молоке, пер. с голл., М., 1965.
А. А. Соловьёв.
Белковые железы
Белко'вые же'лезы, все железы, в секрете которых содержится белок. У позвоночных к Б. ж. относятся поджелудочная, слёзные, из слюнных — околоушная (у человека), подчелюстная (у грызунов) и др. К Б. ж. относятся и железы, выделяющие белок яйца . У беспозвоночных, например у слизняков, — это выросты половых путей, у позвоночных — отдельные клетки в стенках яйцеводов .
Белковые искусственные волокна
Белко'вые иску'сственные воло'кна, волокна, получаемые путём химической переработки белков животного или растительного происхождения. В качестве сырья для Б. и. в. применяют в основном белок молока (казеин ), а также белки, содержащиеся в кукурузных зёрнах, земляных орехах и соевых бобах. Б. и. в. формуют из щелочных (NaOH) растворов белков по так называемому мокрому методу (о методах формования волокон см. Волокна химические ). Волокна окрашивают кислотными, протравными и другими красителями, применяемыми для крашения шерсти. Б. и. в. обладают хорошими теплозащитными свойствами, эластичны, мягки на ощупь, не вызывают раздражения кожи, устойчивы к действию слабых растворов минеральных кислот; неустойчивы в растворах едких щелочей. Обычные органические растворители не повреждают Б. и. в., поэтому изделия из них можно подвергать сухой химической чистке. Прочность Б. и. в. по сравнению с другими искусственными волокнами невелика — разрывная длина от 7 до 10 км, потеря прочности при испытании в мокром состоянии составляет 50—70%. В связи с этим Б. и. в. обычно выпускают в виде штапельного волокна и перерабатывают в изделия в смеси с шерстью или хлопком. Б. и. в. применяют для изготовления костюмных, сорочечных и пижамных тканей; фетровых, вязаных и чулочно-носочных изделий; спортивной одежды и одеял.
Белковые корма
Белко'вые корма', корма растительного и животного происхождения с высоким содержанием протеина . Среди зелёных кормов больше всего протеина высокого качества в молодой траве бобовых — от 132 г (у клевера) до 218 г (у бобов кормовых) переваримого протеина на 1 кормовую единицу (корм. ед.). Из зерновых кормов богаты протеином также бобовые: в 1 корм. ед. зерна гороха содержится до 158 г переваримого протеина, бобов 211 г, сои 223 г. Много протеина в муке и отрубях бобовых, пшенице, просе, жмыхах, шротах, пивных, пекарских и кормовых дрожжах. Корма животного происхождения отличаются не только богатством, но и высокой биологической ценностью протеина. В мясной муке 480 г переваримого протеина на 1 корм. ед., в лучших сортах рыбной муки свыше 600 г, в сухой крови до 554 г.