Черный лебедь. Под знаком непредсказуемости - Талеб Нассим Николас. Страница 78
Замечу, что правило это сформулировано не самым впечатляющим образом: его легко было бы назвать правилом 50/01, то есть 50 процентов работы делается 1 процентом работников. В последней формулировке мир предстает еще более несправедливым, но она абсолютно идентична первой. В каком смысле? Ну если уж неравенство существует, то нужно уточнить: те, кто составляют 20 процентов в правиле 80/20, вносят разный по объему вклад — лишь немногие из них обеспечивают ту самую, львиную, долю результатов.
Примерно один из сотни обеспечивает чуть больше половины общего вклада.
Правило 80/20 — только метафора; это не общее правило, тем более — не строгий закон. В американском книжном бизнесе пропорция скорее будет 97/20 (то есть 97 процентов продаж книг приходятся на долю 20 процентов авторов); если проанализировать соотношение в литературе не художественной, разрыв будет еще более разительным (половину продаж обеспечивают 20 книг из почти 8 тысяч).
Хочу заметить, что не все тут так уж неопределимо. В некоторых ситуациях концентрация 80/20 обладает весьма предсказуемыми и опознаваемыми свойствами, что позволяет принимать уверенные решения, поскольку вы можете заранее вычленить эти важные 20 процентов. Такие ситуации очень легко контролировать. Например, Малкольм Гладуэлл писал в «Нью-Йоркере», что лишь немногие зверюги охранники издеваются над заключенными. Отфильтруйте этих охранников, и уровень издевательств в тюрьме резко упадет. С другой стороны, в издательском деле никогда заранее не знаешь, какая книга принесет жирную прибыль. То же и с войнами: предугадать, какой именно очередной конфликт погубит огромную часть населения планеты, невозможно.
Трава и деревья
Начну эту главу с того, что подытожу и повторю рассуждения, уже изложенные ранее. Шкалирование неопределенности, основанное на кривой нормального распределения, не учитывает возможности (и соответственно влияния) резких скачков или разрывов, а потому неприменимо в Крайнестане. Пользоваться им — все равно что рассматривать траву, вглядываясь в мелкие стебельки и не замечая (огромных!) деревьев. Непредсказуемые большие отклонения, конечно, редки, но на них нельзя закрывать глаза, поскольку их кумулятивный эффект огромен.
Традиционное гауссово исследование мира начинается с фокусирования на обычном, и лишь потом, как нечто побочное, рассматриваются исключения или так называемые «выбросы». Но есть и другой подход, который за основу берет исключительное, а второстепенным считает обычное.
Я не раз уже подчеркивал, что есть случайности двух видов, качественно различные, как воздух и вода. Одна не зависит от крайностей; другая, наоборот, находится под их сильным воздействием. Одна не порождает Черных лебедей; другая порождает. Недопустимо использовать для газа те же характеристики, что и для жидкости. И если бы это было допустимо, такой подход не назывался бы «приближением». Газ не «приближается» к жидкости.
Можно с толком использовать гауссов метод для упорядочения тех величин, которые по объективным причинам не слишком сильно удаляются от средних значений. Если переменные находятся в зоне действия закона гравитации или имеются физические ограничения, препятствующие чрезмерной дифференциации размеров, значит, мы попали в Среднестан. Если сила равновесия настолько велика, что малейшая разбалансировка мгновенно ликвидируется, то опять-таки гауссов метод вполне приемлем. В противном случае грош ему цена. Вот почему экономика в общем-то зиждется на понятии равновесия: оно помимо всего прочего устраивает экономистов тем, что позволяет втискивать экономические явления в гауссовы рамки.
Заметьте, я не утверждаю, что среднестанский тип случайности не допускает никаких крайностей. Но они настолько редки, что в конечном итоге роль их очень невелика. Эффект таких крайностей ничтожно мал и уменьшается с увеличением общей совокупности.
Теперь немного конкретики: если у вас имеется набор великанов и карликов, а иначе говоря, наблюдения, различающиеся на несколько порядков величины, вы можете все-таки оставаться на территории Среднестана. Почему? Сейчас выясним. Предположим, что у вас есть выборка в тысячу человек, с широким диапазоном от карлика до великана. Скорее всего, в этой выборке встретится много великанов, а не только какой-то один, случайный. Неожиданно возникший лишний великан не изменит среднего показателя, потому что заранее предполагается, что великанов несколько и ваш средний показатель, скорее всего, и так достаточно высок. Другими словами, наибольший экземпляр не может сильно возвышаться над средним. Средний показатель всегда учитывает наличие как великанов, так и карликов, поэтому никто из них не попадет в разряд редкостных исключений — если только не народится вдруг какой-нибудь уникальный мегавеликан или микрокарлик. Это будет Среднестан с большой амплитудой разброса.
Снова отметим следующую закономерность: чем реже событие, тем менее точно мы можем оценить степень его вероятности — даже в рамках гауссианы.
Позвольте вам продемонстрировать, как «гауссова кривая» вытесняет из жизни случайность — потому она так и популярна. Мы любим ее за то, что она дает определенность! Каким образом? За счет усреднения, о чем сейчас и пойдет разговор.
Почему нам удается спокойно пить кофе
Вспомним кое-что из обсуждения Среднестана в главе 3: ни одно отдельное наблюдение не влияет на итог. И это свойство будет приобретать все большую и большую значимость по мере увеличения рассматриваемой вами совокупности. Средние показатели будут все больше и больше стабилизироваться, пока в конце концов самые разные выборки не станут похожими как две капли воды.
За свою жизнь я выпил множество чашек кофе (это моя главная слабость). Но никогда не видел, чтобы чашка подпрыгнула на два фута и кофе не проливался на эту рукопись без внешнего вмешательства (даже в России). В самом деле, чтобы стать свидетелем такого события, недостаточно невинного пристрастия к кофе; потребуется больше жизней, чем, пожалуй, можно вообразить, — шансы равны единице после такого количества нолей, что я не смогу их выписать, даже если употреблю на это все свое свободное время.
Но законы физики свидетельствуют, что чашка все же могла бы подпрыгнуть, — это очень маловероятно, но возможно. Частицы постоянно куда-нибудь прыгают. Как получилось, что кофейная чашка, сама состоящая из прыгающих частиц, не прыгает? Причина, говоря попросту, вот в чем: чтобы чашка подпрыгнула, нужно, чтобы все частицы прыгнули в одну и ту же сторону и сделали бы это вместе несколько раз подряд (при компенсирующем движении стола в обратную сторону). Все несколько триллионов частиц в моей кофейной чашке не прыгнут в одну и ту же сторону; этого не случится, сколько бы ни просуществовала еще наша Вселенная. Поэтому я могу спокойно поставить кофейную чашку на край письменного стола и призадуматься о более серьезных зонах неопределенности.
Спокойствие, гарантированное моей кофейной чашке, иллюстрирует то, как гауссова случайность «укрощается» усреднением. Если бы моя чашка была одной большой частицей и вела себя так, как