Черный лебедь. Под знаком непредсказуемости - Талеб Нассим Николас. Страница 79
Хозяева казино прекрасно это понимают, и поэтому они никогда (если всё правильно делают) не теряют денег. Они просто не позволяют одному игроку сделать крупную ставку, вместо этого предпочитая, чтобы множество игроков сделали ряд ставок ограниченного размера. Игроки могут в сумме поставить 20 миллионов долларов, но не надо беспокоиться о благополучии казино: ставки равны в среднем 20 долларам; казино ограничивает ставки тем максимумом, который позволяет хозяевам казино спокойно спать по ночам. Поэтому колебания доходов казино будут смехотворно малы, независимо от активности всех имеющихся в наличии игроков. Никто из них никогда не выйдет из казино с миллиардом долларов.
Вышеизложенное представляет собой проявление высшего закона Среднестана: когда игроков множество, отдельный игрок практически не повлияет на итог, кроме как по мелочи.
Отсюда следует то, что колебания вокруг среднего в гауссиане, также называемые «ошибками», на самом деле — не повод для волнений. Они маленькие, их можно легко отбросить. Они — одомашненные флуктуации вокруг среднего.
Любовь к определенности
Если когда-то в колледже вам довелось прослушать (скучнейший) курс лекций по статистике и вы не поняли почти ничего из того, чем так восторгался профессор, если вы так и не уяснили, что такое стандартное отклонение, не расстраивайтесь. Понятие стандартного отклонения бессмысленно вне Среднестана. Ясно, что гораздо полезней и куда приятней было бы прослушать курс по биологическим аспектам эстетики или постколониальному африканскому танцу, и это проверяется эмпирически.
Стандартные отклонения не существуют вне гауссианы, а если и существуют, то они не важны и мало что объясняют. Но дальше — хуже. Гауссово семейство (которое включает различных друзей и родственников, скажем, закон Пуассона) — единственный класс распределений, для описания которого достаточно стандартного отклонения (и среднего показателя). Больше ничего не нужно. «Гауссова кривая» — находка для любителей упрощений.
Есть другие понятия, которые почти ничего не значат вне гауссовой ситуации — корреляция и, хуже того, регрессия. Но они глубоко внедрились в наши методы; в любом деловом разговоре непременно услышишь слово корреляция.
Чтобы увидеть, сколь бессмысленна бывает корреляция вне Среднестана, рассмотрим данные прошлых лет, по две величины, которые уж наверняка из Крайнестана, скажем, рынки облигаций и акций, или две цены акций, или такие две величины, как изменения в продажах детских книг в США и в производстве удобрений в Китае; или цены на недвижимость в Нью-Йорке и обороты монгольского фондового рынка. Измерьте корреляцию между парами величин за различные периоды, скажем, за годы 1994, 1995, 1996 и т. д. Корреляционное соотношение, скорее всего, будет резко меняться от периода к периоду. И при этом все говорят о корреляции как о некой реальности, делая ее осязаемой, наделяя ее физическими свойствами, материализуя ее.
Мы склонны конкретизировать и то, что называем «стандартными» отклонениями. Рассмотрим любой ряд прошлых цен или значений. Разбейте его на отрезки и измерьте их «стандартное» отклонение. Удивлены? Каждая выборка даст свое «стандартное» отклонение. Тогда почему все говорят о стандартных отклонениях? Попробуй пойми.
Картина тут та же, что и при искажении нарратива: когда сравниваешь прошлые факты и вычисляешь одну-единствен-ную корреляцию или стандартное отклонение, такой нестабильности не замечаешь.
Как вызывать катастрофы
Если вы пользуетесь термином статистически значимый, опасайтесь иллюзии определенности. Всегда есть вероятность, что кто-то примет свои ошибки наблюдения за гауссовы, но тогда и контекст должен быть соответствующим, гауссовым, то есть среднестанским.
Чтобы показать, сколь неизбывно злоупотребление гауссианой и сколь это может быть опасно, рассмотрим (скучную) книгу под названием «Катастрофа», написанную судьей Ричардом Познером, плодовитым писателем. Познер сетует, что госчиновники ничего не смыслят в случайности, и рекомендует высшим должностным лицам учиться статистике… у экономистов. Поистине судья Познер пытается провоцировать катастрофы. Жаль, конечно, что он большую часть времени отдает писательству, а не чтению, но, несмотря на это, мыслитель он проницательный, глубокий и оригинальный. Просто, как и многие другие, не знает о том, что между Среднестаном и Крайнестаном есть существенные различия, и свято верит, что статистика — «наука», а не обман. Если столкнетесь с ним, расскажите ему, как все обстоит на самом деле.
Усредненное чудовище Кетле
Эта химера, называемая «гауссовой кривой», или гауссианой, создана была не Гауссом. Да, он работал над ней, но как математик-теоретик, не прилагая ее к устройству нашей реальности, как это делают ученые со статистическим поворотом ума.
Г. X. Харди писал в «Апологии математика» [73]:
«Настоящая» математика «настоящих» математиков, таких как Ферма, Эйлер, Гаусс, Абель и Риман, почти целиком «бесполезна» (что верно не только для «чистой», но и для «прикладной» математики).
Ранее я уже говорил, что кривая нормального распределения была в общем-то изобретением игрока, Абрахама де Муавра (1667–1754), французского изгнанника-кальвиниста, который провел большую часть своей жизни в Лондоне, хотя и говорил по-английски с сильным акцентом. Но, как мы сейчас с вами увидим, одним из самых злостных вредителей в истории развития мысли надо считать совсем даже не Гаусса, а Кетле.
Адольф Кетле (1796–1874) создал понятие «Phomme moyen» — «физически средний человек». Сам Кетле, «человек, наделенный мощными творческими страстями, творец, полный энергии», ни в чем не был moyen. Он писал стихи и даже принял участие в сочинении оперы. Беда заключалась в том, что Кетле был математиком, а не ученым-эмпириком, только сам этого не осознавал. Он усмотрел гармонию в кривой нормального распределения.
У этой проблемы два уровня.
Primo. Кетле увлекся идеей «нормативности», он хотел подогнать мир под некие средние стандарты, питая иллюзию, что это среднее и есть «норма». Конечно, было бы замечательно, если бы мы могли игнорировать влияние на нашу действительность всего необычного, «ненормального», то есть Черного лебедя. Но оставим эту мечту утопистам.
Secondo вытекает из primo и представляет собой серьезную эмпирическую проблему. Математику повсюду мерещились колоколовидные кривые. Они ослепляли его, и я вновь убедился: если к тебе в голову забралась такая кривая, ее трудно вытравить оттуда. Позже Фрэнк Исидро Эджуорт будет называть кетлизмом эту опасную тенденцию подводить все под «колокол».
Золотая посредственность
Концепция Кетле пришлась весьма кстати идеологам того времени, которые как раз жаждали чего-либо подобного. Вы